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ABSTRACT: We present a manifestly SO(8) invariant non-linear Lagrangian for describing
the non-abelian dynamics of the bosonic degrees of freedom of N coinciding M2 branes in
flat spacetime. The theory exhibits a gauge symmetry structure of the BF type (semidirect
product of SU(N) and translations) and at low energies it reduces exactly to the bosonic
part of the Lorentzian Bagger-Lambert Lagrangian for group SU(NN). There are eight scalar
fields satisfying a free-scalar equation. When one of them takes a large expectation value,
the non-linear Lagrangian gets simplified and the theory can be connected to the non-
abelian Lagrangian describing the dynamics of N coinciding D2 branes. As an application,
we show that the BPS fuzzy funnel solution describing M2 branes ending on a single M5
brane is an exact solution of the non-linear system.
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1. Introduction

Understanding the dynamics of multiple M2 branes may reveal important aspects of the
microscopic structure of M-theory. Recently several models for M2 brane dynamics with
explicit Lagrangian description have appeared in the literature. In [[]] Bagger and Lambert
found a Lagrangian with maximal superconformal invariance containing the expected de-
grees of freedom of M2 branes (see also [, f[]). The construction uses an algebraic structure
called a Lie 3-algebra, parametrized by structure constants ¢ 4» and a bi-invariant metric
h?® . The structure constants must satisfy a quadratic condition which turns out to be quite
restrictive. It was shown in [fl, ] that for a positive definite metric A% the known example
fabed o gabed g essentially unique, leading to a model with local SO(4) invariance which
can be interpreted as describing two M2 branes in an R®/Z orbifold background [A, .

In [§-[Q] it was shown that if the metric h® has Lorentzian signature, then one
can construct superconformal models for any Lie algebra. In particular, choosing this Lie
algebra to be su(N), one obtains an N’ = 8 superconformal invariant Lagrangian, proposed
to describe the dynamics of N M2 branes in flat spacetime. By giving an expectation value
to one of the scalar fields through the procedure found in [[L1], one can indeed show [§, [LO]
that in the IR regime (corresponding to a large expectation value) the model reduces to
the maximally supersymmetric Yang-Mills Lagrangian describing the low-energy dynamics
of N D2 branes. The bosonic part of the Lagrangian is given by
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where the fields A, = AT, B, = BT, X! = X117 transform in the adjoint of su(N),
whereas X{_L are su(NN) singlets. We take hermitian N x N matrices T% a =1,...,N?—1,
satisfying Tr(T“Tb) = Ndg4. We have also introduced the notation

MYE = xTx7 XK x xR xT) + XExt x7), (1.2)
D.x"'=p,x"-xIB, D, X'=08,X"+iA,, X]. (1.3)

As a consequence of the Lorentzian signature of h%, there is a field X! = X JIF + X! with
the wrong sign in the kinetic term, which may lead to violation of unitarity. Different
arguments have been given in [§-[[d] (see also [[d—[[F]) that the model may nevertheless
be unitary due to the particular form of the interactions, which ensure that X, and X_
can be integrated out by its equations of motion; they also imply that the ghost-like fields
do not run in loops of Feynman diagrams. The role of the X _{_,X ! fields is to provide a
special kind of dressing that leads to the conformal invariance of the model.

A different strategy studied in [, [7]] is to gauge the global translational symmetry
X — XT + ¢! by means of the introduction of a gauge field Clﬁ in a new term in the
Lagrangian —Ci(‘)“X 41_ The equation of motion of C’i then freezes out the mode X 41_ to
a constant value. The resulting model seems to be essentially equivalent to the maxi-
mally supersymmetric Yang-Mills Lagrangian describing the low energy dynamics of D2
branes, though this has not yet been shown in a complete treatment including calculation
of observables (see also [[L§]).

In addition to the SU(N) gauge symmetry, the above Lagrangian is invariant under
the (non-compact) gauge symmetry transformations associated with the B, gauge field,

ox'=XIA, 6B,=D,A, XL =0, 6XI =Tr(X'A). (1.4)

The symmetry algebra underlying the model is generated by J¢, P satisfying the BF
algebra

[Je, J% =ic® g¢, [P, JY =ic® P, [P PY]=0. (1.5)

where C% _ are (real) structure constants of su(N).

The Lagrangian ([[.1)) is a candidate to describe M2 brane dynamics in the low-energy
approximation. The full M2 brane dynamics is expected to be described by a non-linear
theory which at low energies reduces to ([[.1) and in some limit (discussed below) reduces to
the non-linear dynamics of N D2 branes. The non-linear Lagrangian describing the dynam-
ics of D branes is not fully understood in the non-abelian case. However, there is a concrete
Lagrangian for the bosonic degrees of freedom [[[d, RJ] which works quite well up to high
orders in o/ 21]-R3J]. For flat backgrounds, the non-abelian D2 brane Lagrangian reduces to

L= =T STr [/~ det(i + A2D,@IQ; Dy®I + AFy) det Q (1.6)
where STr means symmetrized trace [[9] and

QY = 6V 4 iN\[®°, ®7) . (1.7)



As usual, ®° represents the transverse displacements, Az? = A\®*, \ = 27i2. For further
details we refer to [[[9, BJ]. The tension is

1 1 2 s
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For a single M2 brane, the classical non-linear dynamics is governed by the super-
membrane action [24]. For multiple M2 branes, the non-linear action analogous to the
non-abelian D brane Lagrangian is not known. The aim of this paper is to find a non-
linear SO(8) invariant Lagrangian for the bosonic degrees of freedom of the M2 branes
that reduces to the non-abelian D2 brane Lagrangian at large gyn coupling and to the BF
membrane Lagrangian ([L1]) at low energies.

Another proposal for M2 branes in flat spacetime was presented in [R5, called ABJM
models, in terms of a Lagrangian that realizes six supersymmetries (see also [R6, R7]). We
have not found a natural ansatz for the non-linear generalization of the ABJM models,
so we will not discuss them in this paper. Some studies of non-linear Lagrangians for M2
branes, which do not overlap with this paper, are in 2§, R]. It would also be interesting
to understand the non-linear theory for the Bagger-Lambert construction based on the
Nambu-bracket [BJ—B3J].

This paper is organized as follows. In section 2 we start with the abelian case. Here
one can write two alternative proposals, but only one of them survives in the non-abelian
case. In section 3 we consider the non-abelian case and propose a non-linear M2 brane
Lagrangian with the desired symmetry structure, which turns out to be directly related to
the non-abelian D2 brane lagrangian when one of the scalar fields is set to a constant value.
In section 4 we check that the supersymmetric funnel of eleven dimensions — representing
a fuzzy M2-M5 brane intersection — is an exact solution of our proposal, and that is not
modified by the non-linearities, just as it happens in the D1-D3 brane case [B4)].

2. From D2 branes to M2 branes in the abelian case

The connection between the single D2 brane and the single M2 brane action was derived
in [B5. Here we will review part of this connection, following [BH], and in addition connect
with the recently found BF membrane (or “Lorentzian Bagger-Lambert”) theory (L)
based on the Bagger-Lambert construction. We will only consider the part containing the
bosonic fields. The BI Lagrangian for a D2 brane in the static gauge is given by

L= ~T\/~det (g + M) (2.1)

where

Guv = M + 220,90, 9", i=1,...,7. (2.2)

By introducing a Lagrange multiplier p, this can be written as

1 1 1
L=_—T%det (g) — sp ( 1+ N} F? 2.3
e (g) 3o (14 3007 (2.3



where we used the identity for 3 x 3 matrices
1
det (g + AF) = det (g ) (1 + 5A2|F|2> . |FP=g"g¢" FuF,, (2.4)

which applies for any antisymmetric F),,. Introducing an auxiliary field B, we can write

the Lagrangian as
1

2P (2.5)

This is the standard duality [B] connecting Chern-Simons and Yang-Mills theory in three

1 1
L= %T2 det (gw) (1 + Ngy\BuBug™) + 5" By, —

dimensions. Solving the equation for B, substituting in (R.§) and using
1 _ 10 A
|F|? = 5 (detg) Lo Pet VP E, Fy . (2.6)

one can verify that the Lagrangian (R.1)) is reproduced.
Next, using the identity for 3 x 3 matrices

det (gW + KMK,,) = det g, (1 + KMK,,g“”) , (2.7)
we get
1 1 1
L= %TQ det (g + N2gymBuBy) + 5 BuFyp = 5p - (2.8)

Solving the equation of motion for p we find

1
L= —T\/ — det (g + N9\ BuBy) + 3¢ Buky, . (2.9)

Now the equation for A, is solved by B, = 0,¢. This introduces the eight-th scalar field
®8 in the Lagrangian, ®3 = ¢2,,¢. In order to compare with the Lagrangian (7)) (and to
have canonically normalized scalar fields), we introduce new variables X! by

®! = gyu X7, I=1,...,8. (2.10)

Note that [X!] = u!/? carries the standard dimensionality of a bosonic field in D = 2 4 1
and that also [gym] = /2. Therefore, we finally get

L=-T \/— det (77“1, + %OHXI&,XI> , (2.11)

where we used 77! = A\2¢2,, (see eq. ([.§)). The eleven-dimensional Planck length scale
I, is related to T by T~ ! = (27T)2lg (we used lg = [3g,). Thus we find the Lagrangian for a
membrane in the static gauge with the expected SO(8) symmetry.

Now we will show that the Lagrangian (R.9) arises from either one of the following

non-linear generalizations of the (abelian) BF membrane Lagrangian:!

Ly = —T\/ — det (W + %(DHXI D, X1 —2[9, XL - B, X! ]ay)Xi)>

1
5" BuFyp (2.12)

'Here and in what follows we ignore gauge fixing terms and corresponding ghost contributions. The
discussion will be purely classical.



1~ ~ 1
L2 = —T\/— det <7]NV + TDMXIDVXI> + §€MVPBMFVP

X, X - X, X\?
I I I +° I I +° I I
+(0,X - X'B,)o* X1 — : D.xTorx!+ 2< : ) o, xLorx! | (2.13)
where, as usual, A, B,) = %(A B,+A,B ) and
. . X N
I I +° I I I I
DX! = DuX! = == X Xox!, bx'—o.x - x'B, . (2.14)

The Lagrangians L1, Lo are invarlant under the non-compact gauge symmetry transfor-
mations
6B, =0,A, oX'=xIA, X! =AXx', sxl=0. (2.15)
Note that §(D,X!) = 0 and that 5(aux£ — X'B,) = AD, X" while §(D,X") = A9, X .
Therefore, the last terms of eq. ) are also gauge invariant since they can be written as
Xi-X 4 X, X
k. X3

2
(0, XL — X'B,)or X1 — D, x'or X1 + 2< > uXLorXl =

= (0, XL - X'B,)orxL %D“Xf DrXT 4 %D“Xf DrXT ) (2.16)
i.e. they are given by the same gauge-invariant combination appearing in the low energy
lagrangian ([1]) plus the gauge-invariant term DX DX. The full expression (B.14) vanishes
for constant X _{_

The basic difference between the two non-linear Lagrangians L1 and Lo is that in the
second case the kinetic term 9, X i@“X ! is outside the square root. The remaining terms
have to be added to preserve gauge invariance and to preserve the connection with ([[.1)) at
low energies. As we will see, in the non-abelian case, only the second Lagrangian Ly can
be constructed, because X JIF, XTI are SU(N) singlets and cannot be put inside the trace in
a way preserving both SU(N) and B,, gauge invariance.

Following the method of [[[1], we assume that X JIF takes an expectation value, so that
X JIF is equal to constant vector v! plus a small fluctuation. Then the Lagrangians L; and
Ly become

1
LEL1:L2:—T\/— det <77uv+ (0, XT—v'B )(8,,XI—UIB,,)>+§e“”pB“F,,p, (2.17)

where we ignore terms with fluctuations which are suppressed at large v’.
We can use the global SO(8) symmetry to fix v/ = vérs. We get

L=— \/ det (mﬁ 0, X0, X1+~ (a X8—uB )(OVXS—UB,,)>—|—%E“””BMFVP (2.18)

By choosing the gauge X® = 0 for the symmetry (R.15), and taking v = gy, we finally
obtain

oo o1 1
L= —T\/ — det <77/w + 7O XX+ g%MBuBV> + 5" BuFy, . (2.19)

This is precisely the previous Lagrangian (2.9).



3. Born-Infeld Lagrangian for non-Abelian BF membrane

Our starting point is the Lagrangian ([.) describing the dynamics of N coinciding D2
branes. Writing as before ®' = gy X?, the D2 brane Lagrangian is:

1 —_ .
where
QY =07 +idgh[X', X7],  ij=1,...,7. (3.2)

Here we will make a simplifying assumption by considering only the symmetric part of

1
Qw , l.e. we write

STY\/"'D;LX"Q,-_leVXj“‘ — STr\/---D“XiwD,,Xj--- (3.3)

Due to the symmetrized trace prescription, by this assumption we only miss terms involving
contractions of DMXZQZ-_leVXj and FW.2

Therefore, by defining g, = 1w + D, X' (Q~ )(”)D X7, where (ij) denotes sym-
metrization, we have that, inside the STr prescription, g,, = g,, and we can treat g, as
a metric.?

We begin by showing that the D2 brane Lagrangian (B.J]) has the equivalent form

L=-T STr\/—det <77“,,—|—%DuXi(Q )( )D X +;v2d tBQ>d tQ+Tr<%€MVPB F,,p>
(3.4)
with
v =gyMm - (3.5)

First, we use the relation (27) for 3 x 3 matrices, with g, = 9 + 7D, X (Q )(”)D X7,
and K, = vB,/+/T det Q, and write, introducing a Lagrange multiplier u,

1 ' 1 BB
_T\/—det<nuu+fDuX’(Q D Do X0 + v dt@>dt ¢

1 1
= ﬂT2 det Q det g + o” det g Tv*B,,B,g"" — (3.6)

|

Every term in the above expression is a (gauge-group) matrix. In the following manipula-

tions we treat them as c-numbers, assuming that it is justified by the STr prescription.
The equation of motion for B, gives

u e"PF,,

g"B, = ——

2Tv? detg (3.7)

2The Lagrangian that incorporates also the antisymmetric part of D, X" Q 1D, X7 was recently com-
pleted in @], after this paper appeared, follovvlng the construction presented here
*Note that (Q~")(;j) is different from (Q;)) ™" = &ij.



Substituting back we get

1 . 1 ,B,B, 1
_ _ - 7 2K ~_pvp _
T\/ det <77W+TD“X (@71 iy Dv X7 + v >det Q+ 5"’ BuFy, =

2
_ %T2 det Q det g — %(1 + 2“;1]2) ,(3.8)
where |F|? = g““/g”"/FWFM/V/ and we have made use of gMM/e“"pF,,pe“/”’plelpl =
2det g|F|?.

Solving for u, setting v = gym and using egs. ([[.§), (B-4), we finally obtain the D2
brane Lagrangian (B.1)).

Just as in the abelian case, the above Lagrangian (B.4) originates from an M2 brane
Lagrangian, where the term B, B, arises from a term DuX8D,,X8. The SO(8) invari-
ant starting point must be of the form INJMXIQI_}DVXJ, I,J=1,...,8, where Qr; and
the covariant derivative D“ are to be determined. The connection with the D2 brane
Lagrangian (B.4) requires that, upon setting X _{_ = vdrg, with v = gym, one gets

D,X'Q7;D, X7 — D, X'Q;;' D, X7 + u2§gT% : (3.9)
Therefore,
X =wig— QV=QY, Q®=Q¥%=0, Q*®=detQ. (3.10)
Hence
det Q = (det Q)? . (3.11)

One could in principle relax the condition @Y = Q% in (B.I() and impose the weaker
condition (Q_l)(i]—) = (Q‘l)(ij). However, it turns out that the simplest ansatz for Q7
naturally gives Q%Y = Q".

Invariance under the non-abelian B,, gauge transformations ([L.4) is achieved by defin-
ing, just like in the abelian case,

X, X

M 1 2 I
DuX! = DuxX! - ==

—0,X1, (3.12)
where lA?uX I— D, X r_x JIFBM is the covariant derivative ([[.3) appearing in the low energy
lagrangian (now D, X! = 9, X! +i[A,, X"]). Tt follows that §(D,X"’) = 0 under ([4).
Recall that X1 are SU(N) singlets.

Let us now return to the general form of @Q'7. This must be given in terms of
X _{_ and X' in a combination invariant under the B,-gauge transformations ([.4).
should not depend on XZ in order to maintain the important property of the low energy
BF membrane Lagrangian ([.I) that interactions do not involve X’ (this ensures, in
particular, that X, XI do not propagate in loops B]) Some simple gauge-invariant SO(8)
tensors are 677, XJIFX;{, XfM”K, where MT7K was defined in eq. (L3). More general
gauge-invariant operators involving X 41_ and X7’s can be constructed by forming products



O, = Xle J2 . X7n] where [...] denotes complete antisymmetrization in all indices.*
Then one can define SO(8) tensors P!/ = (O, - 0,_2)!Y or Rl = (0,, - 0,)!7 (in a
short-hand notation, meaning that all indices are contracted except two indices I, J). The
simplest gauge-invariant SO(8) tensor Q7 satisfying the “boundary” conditions (B.10) is
in fact of the form?®
Q" =a(X,X;) 6" +b(X, Xy) X{X] +o(X, Xy ) XEMK, (3.13)
where a, b, ¢ are gauge-invariant (and SO(8) invariant) functions of X7, X1.
Imposing ‘t‘he conditiop (B.10) f9r X1 = vérs, with v = gyy (noting that 77120 =
g%y and M8 = o[X? X)), then Q!7 is uniquely determined:
J

I I yvJ : KarlJK I yJ
Ol = st 4 X}f* (det(S) — 1) = (5” - X}f* + #Xt/Mi ) + XX)2(+ det(S),
+ X2
(3.14)
where [
i XEM
ST =617 4 X2 =Xxix1. (3.15)

\/_ — =
In the above formulas, it is understood that 51 J and X iX i are multiplied by the identity
matrix Iy« n-

One can check that Q77 is indeed invariant under B,-gauge transformations ([[4).
Note that the expression (B.14) involves a decomposition in a first term orthogonal to X _{_
(since X JIFM K x f = 0 by virtue of the fact that MK is completely antisymmetric),
and a second term proportional to X1 X/ (hence XI XJ/Q = X2 det(S)).

One can check that

LafLIK I pfIKJ
XyM XM MIJK MK

NN

- XIMIJK XJXK n - XIMIJK
G 8 i)

YN VI

— Trlog(Q") = Trlog(5™7) + log (det(5)) — det @ = (det(S))?

(3.16)

> (det(S)—1)" (3.17)

Thus we are led to the following nonlinear Lagrangian for multiple M2 branes:

1 - o~ ~ 1
L=-T STr<\/ — det <mw + TDHXIQ;}D,,XJ> (det Q)1/4> - ﬂ(EEWPBqup>
+(0, XL —Tr(X!B,))o* XL

X X Touyl _ <X+ X>2 I oyl
T Duxlonx! 9, xLorx (3.18)
< X+ 9 X-2|- nt +

4This observation is due to M. Van Raamsdonk.
5The condition Q¥ = Q% seems to leave () as the unique solution, since XKM”K RJ'—RL | with
= O} 0K’ is the only gauge-invariant operator which is antisymmetric in IJ and quadratic in X'.
On the other hand, we have not found any simpler @'’ from the weaker condition (Qfl)(ij) =(Q -



The connection with the D2 brane Lagrangian is thus as follows. For XJIr = virg we
get S = QU, S8 = §® — (0, $% = 1, hence detS = detQ, detQ = (det Q)? and
(Q_l)ij = Qi_jl7 (QY)gs = 1/ det Q. Then, by choosing the gauge X8 = 0 we recover B4,
which, by the steps (B.6), (B.7), (B-§), can be connected to the D2 brane Lagrangian (B.J)).

As in the abelian case, the last term is added in order to match the low-energy La-
grangian. Note that it vanishes for constant X 4]_ Its origin is the non-abelian version of
the gauge-invariant combination eq. (2-16).5

At the linearized approximation

1 XLMLJK XIMIKJ 1
2%1+? + : + : :1—3—TM”KM”K. (3.19)
Jxoo/x2

Note that the factors ,/X_2|_ appearing in the denominator have canceled out. It can be

det @ = (det(S5))

easily shown that this is the case to all orders, viz. all terms in the expansion of the
potential V =T STry/det(S) in powers of 7! only contain non-negative powers of X?r.

Using (B-19), the Lagrangian (B.I§) becomes,
1 1o oo 1
L=—-NT+Tr [ge”wBqup - iDuXID”XI + EM”KM”K
+(0, XL — Te[X'B,))o" XL + O(13) (3.20)

that is, we get the Lagrangian ([L.1)).

4. Fuzzy funnel for M2-M5 brane intersection

In this section we compare a BPS solution of the low energy Lagrangian ([[.1)) with an exact
solution of the non-linear system (B.1§). The solution generalizes the fuzzy funnel solution
of [B4] describing N D1 branes ending in a D3 brane to eleven dimensions. Studies of BPS
solutions in the Bagger-Lambert system can be found in [g, B§-[J.

4.1 BPS solution in BF membrane model

The BPS equations corresponding to the system ([[.1)) are given by [§—[I(]
50, =9, xirrrl e =0,
§0_ = (9, XL — Tr[B,X"])*T"e — %Tr (XX XKTE e =0, (4.1)
60 = (9, X" — B, X1 +[A,, X )" e — X' X/XET!E e =0 .

The world-volume directions are o, 0, 05 and they are identified with 0,9,10 (so that
=19 1t =19 I? =TI'9). Here ¢ is an eleven-dimensional Majorana spinor satisfing
the condition I'gj5e = €.

5The appearance of factors Xi = Xerfr in the Lagrangian (B.1§), and the fact that the Yang-Mills
coupling is g2y = (Xerfr), may suggest an interpretation of X3 as a radial coordinate representing the

center of mass position of the M2 branes @] However, this does not seem to be the precise role of Xfr in
the Lagrangian (B.1§).



To solve the first equation, we set X JIF = vdrs. We then look for solutions with
B, = A, =0 and set X = XITe W = U, T% with Tr[T,Ty] = Kd4. The remaining
equations reduce to

1
§U_ = 9, X' rrrle - oK CtdxIXI X ETHE =0,
50, = 9, X717 — gcbc JXIXITI8 o =0 . (4.2)

The system admits a solution with SU(2) symmetry. We set T% = of, i = 1,2, 3 to be SU(2)
generators in some N x N representation, so that C¥* = 2¢7¥. We then consider the ansatz

X! = f(o)dar, a,l=1,...,3, x! = p(o)drs, (4.3)

a

where 0 = o;. This gives the equations
Plo) =F2Kf(0)’,  f'(0) =+2vf(0)?, (4.4)

and the conditions on the spinor
12389 — ¢ (4.5)

The equation f’(o) = £2vf(0)? is exactly the same equation that arises for the fuzzy
funnel in the D1-D3 brane system (taking into account the normalization (R.1(])). The

solution is given by
1

2(01 — 0c0)
where 04, is an integration constant representing the position of the D3 brane. Integrating

vf(0) = F , (4.6)

the equation for p, we get
K

01 — 0c0)

For an irreducible N x N SU(2) representation K = 1N (N? — 1).

p(0) =Fg3 ( 5 (4.7)

4.2 Funnel in non-linear M2 brane theory

Here we discuss the funnel solution starting from the non-linear M2 brane La-
grangian (B.I§). The ansatz is:

X' = f(o)o, i=1,2,3, X'=0 for I >3, (4.8)
X1 =v(0)dss , XL = p(o)drs
B, =0, F. =0,

where, as before, o' are the SU(2) generators in some N x N representation, and o = o3

is a world-volume space coordinate.
With this ansatz the Lagrangian (B.1§) becomes:

L=-T STr<\/ (T + % [aiQ;; ad) det Q> + ' (4.9)

where Ty is the identity matrix, and Q¥ = Z§% + ﬁzﬂfz[oﬂ', all.

— 10 —



Assuming the symmetrized trace prescription (or neglecting commutators, which lead
to contributions that are subleading in the large N expansion) we obtain

a'Qtad = CoT,  detQ =T +4T7' f42CoT, (4.10)

where Cs is the quadratic Casimir of the SU(2) N x N representation. Therefore

L= —TN\/(l + %fQCg) <1 + 4%]041)26'2) +p'v . (4.11)

The variation with respect to p gives v = const. The variation with respect to v gives the

1+ N f/2C'2
" 4 T
+4vf*NC =0. 4.12
b of 2 \ 1+ 44 f402Cy (4.12)

One can substitute the second-order equation for f by the condition

5L 6L 0L | 1+ 4f2C
fld_f/ —l—p/é—p, + UIW — L = const — m = const . (4.13)

The last equation is solved by the solution of the first order equation:

equation:

f==+2f%, (4.14)
whereby it follows that the equation (f.13) for p is equivalent to

The above system of two first order equations (f.14), (E13) is the same as eq. (E4),
obtained by looking for a supersymmetric solution of the linearized Lagrangian. Thus the
BPS solution of the leading order theory ([L.1)) is also a solution of the full nonabelian M2

brane non-linear Lagrangian (B.1§).

5. Discussion

Summarizing, we found the following non-linear Lagrangian

L=-T STr<\/ — det <mw + %DHXIQ;}&,XJ> (det (2)1/4) + ﬂ(%ewaqup>

+(0, XL —Tr(X!B,))o* XL

Xp X - /Xy X\2
—Tr< ;(i Dx"orx! - 5( }3 ) a“XiaMXi> (5.1)
where
~ R X+ . X
D, X' =D, x" - Tauxi, (5.2)
+
D, X' =p,x' - xIB, D, X'=0,X"+ilA, X]. (5.3)
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and Q' is defined in eqgs. (B:14), (.J). It is invariant under SU(N) gauge transformations
and under the non-compact B,, gauge transformations ([L.4). The equation of motion for
XTI gives

9,0' XL =0 . (5.4)

The second line of eq. (F.1]) — which is gauge invariant by itself and vanishes for
constant X 4[_ — ensures the match with the low-energy theory. As pointed out in section
2, the kinetic term for X1, X! appearing in the low-energy Lagrangian ([L.J) cannot be
put inside the square root because X JIF, X1 are SU(N) singlets. Since D“X D, X7 alone
is not gauge invariant under B, gauge transformations ([.4), one is led to introduce the
covariant derivative [)MX I to render the square-root term invariant. On the other hand,
the factor (det Q)'/* ensures that, after setting X1 = vdys, the correct D2 Lagrangian (B.1)
is reproduced, neglecting the antisymmetric part of D, X ZQZ-_leVXj and modulo terms
involving fluctuations of X i which are suppressed at large v. These fluctuation terms are
totally absent if the shift symmetry X — X! + ¢! is gauged as in [[4-[3] by adding the
term —C’i@”Xi. Indeed, the equation of motion of C’i is 8¢LX3’r = 0, which sets Xf_ to a
constant value v?.

In conclusion, the Lagrangian (p.1]) satisfies the following properties:
e SO(8) invariance.

e Invariance under the local gauge symmetries of the BF theory with algebra (L3) (i.e.
SU(N) gauge invariance and B,,-gauge transformations ([[.4)).

e It contains just one dimensionful parameter I3 (or T' = 1/(47%13)), which disappears
in the low energy approximation.

e At low energies the Lagrangian (p.1)) reduces to the bosonic part of the BF membrane
Lagrangian ([L.1]).

e When X _{_ takes a large expectation value the Lagrangian (p.]) gets connected to the
non-abelian D2 brane Lagrangian ([L.6).”

e The supersymmetric fuzzy funnel is a solution of the non-linear Lagrangian (p.1]) to
all orders. It does not receive any correction, just as it is the case for the D brane
fuzzy funnel system describing the intersection of a D1 and a D3 brane [B4].
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